
Galerkin Method of Regularized Stokeslets
for Procedural Fluid Flow with Control Curves

Ryusuke Sugimoto
University of Waterloo

Waterloo, Ontario, Canada
rsugimot@uwaterloo.ca

Jeff Lait
Side Effects Software Inc.
Toronto, Ontario, Canada

jlait@sidefx.com

Christopher Batty
University of Waterloo

Waterloo, Ontario, Canada
c2batty@uwaterloo.ca

Toshiya Hachisuka
University of Waterloo

Waterloo, Ontario, Canada
thachisu@uwaterloo.ca

Figure 1: Leaves caught up in a whirlwind. We manually specify the velocity and angular velocity along the control curve (left).
The method can compute the resulting incompressible velocity field at any point in the ambient space, such that it conforms
to the input along the control curve (middle). We evaluate the velocity at the leaf positions to advance the particle-based
animation of leaves in a whirlwind (right). See the supplemental video for animation.

ABSTRACT
We present a new procedural incompressible velocity field author-
ing tool, which lets users design a volumetric flow by directly
specifying velocity along control curves. Our method combines
the Method of Regularized Stokeslets with Galerkin discretization.
Based on the highly viscous Stokes flow assumption, we find the
force along a given set of curves that satisfies the velocity con-
straints along them. We can then evaluate the velocity anywhere
inside the surrounding infinite 2D or 3D domain. We also show the
extension of our method to control the angular velocity along con-
trol curves. Compared to a collocation discretization, our method is
not very sensitive to the vertex sampling rate along control curves
and only requires a small linear system solve.

CCS CONCEPTS
• Computing methodologies→ Physical simulation.

KEYWORDS
Method of Regularized Stokeslets, Galerkin method

1 INTRODUCTION
Authoring a plausible incompressible fluid velocity field from user
inputs is a longstanding, challenging problem. Incompressible (i.e.,
divergence-free) fields are strongly preferred because a divergent
velocity implies the presence of nonphysical sources or sinks of fluid
material. There are currently two popular options for authoring
incompressible velocity fields: projection of an input velocity field
and Curl-Noise [Bridson et al. 2007].

The projection approach solves Poisson’s equation to remove
divergence in the input velocity field, thereby making it incompress-
ible. This option is implemented in many fluid simulation systems

and necessitates discretization. Discretization of a given velocity
field can be tedious for artists to set up, and depending on the
spatial resolution, the result can exhibit large errors compared to
the analytical solution. Moreover, projection often alters the input
velocity field in an undesirable and unpredictable manner, making
it difficult for users to achieve their intended flow.

The Curl-Noise approach [Bridson et al. 2007] essentially con-
structs a velocity field as the curl of a user-designed potential func-
tion. Unlike the first option, Curl-Noise does not involve any glob-
ally coupled linear system (e.g., Poisson’s equation) and does not
require discretization. While adding a turbulent, incompressible
noise to an input velocity field is easy with Curl-Noise, it remains
highly unintuitive for users to specify an intermediate potential
field whose curl would yield a desired incompressible flow.

We propose a new velocity field design approach: we let users
specify the velocity directly along control curves, and then natu-
rally extend those velocities throughout the ambient space. This
approach contrasts with the indirect control offered by Curl-Noise,
and, unlike the projection method, does not discretize the volumet-
ric ambient space. Our method extends the Method of Regularized
Stokeslets (MRS) [Cortez 2001; Cortez et al. 2005] to achieve this.
We represent the resulting velocity field with a superposition of
(regularized) Stokeslets, which are fundamental solutions for the
steady-state Stokes equations. The Stokes equations model the ve-
locity field for highly viscous and incompressible quasi-static flows.
A Stokeslet represents a solution to the equation in an infinite do-
main under a point-concentrated applied force. Given the velocities
at a few sample points, we can solve a linear system to determine
the forces at those points that satisfy the user’s velocity constraints.
Then, by superposing Stokelets at those locations with correspond-
ing forces, we can compute a velocity field at any point inside the
domain. The standard MRS assumes that the velocity is specified

https://orcid.org/0000-0001-5894-0423
https://orcid.org/0009-0004-7114-9168
https://orcid.org/0000-0003-3830-7772
https://orcid.org/0000-0003-0284-3776


Ryusuke Sugimoto, Jeff Lait, Christopher Batty, and Toshiya Hachisuka

at a few independent points. We extend MRS to allow the velocity
to be specified along control curves represented as polylines and
construct a linear system with a Galerkin method to intuitively con-
trol the resulting velocity field. We also adapted the twist control
introduced for elasticity [de Goes and James 2017] so that users can
specify the angular velocity of the field along the control curves. A
similar control is available in force field design tools [Blender On-
line Community 2024; Side Effects Software Inc. 2024], and having
the capability to directly design the angular velocity improves the
usability of our tool. An implementation of our algorithm is shipped
as a new feature (POP Curve Incompressible Flow dynamics node)
in the visual effects software Houdini 20.5 [Side Effects Software
Inc. 2024] (Fig. 1).

2 METHOD OF REGULARIZED STOKESLETS
The Stokes equations that MRS [Cortez 2001; Cortez et al. 2005]
uses to model the effect of highly viscous and incompressible flow
due to a body force term b are given as

`∇2u − ∇𝑝 + b = 0 and ∇ · u = 0, (1)

where u is velocity, 𝑝 is pressure, and ` is constant dynamic vis-
cosity. As we are only interested in the resulting velocity field, we
assume ` = 1 without loss of generality. Let us consider the so-
lution to the Stokes equations in an unbounded domain, R2 or
R3. Suppose that we have a spatially concentrated body force
b(x) = 𝛿 (x − y)f for Eq. 1. Solutions to PDEs under such con-
centrated source terms are known as fundamental solutions, and for
the Stokes equations, the velocity fundamental solution is called the
Stokeslet: S3𝐷 (x, y) = 1

8𝜋`

{
1
𝑟 I +

1
𝑟 3
rrT

}
where r = y − x, 𝑟 = ∥r∥2.

The resulting velocity field is given as u(x) = S(x, y)f . The Stokeslet
is singular at the source location (i.e., unbounded at x = y), and
using it directly during computation is prone to numerical issues.
Instead of this regular Stokeslet, we consider solutions to Eq. 1
under a concentrated yet regularized load b(x) = 𝛿𝜖 (x− y)f . In 3D,
we follow the specific choice of regularization 𝛿𝜖 by Cortez et al.
[2005], which yields the regularized Stokeslet

S𝜖3𝐷 (x, y) = 1
8𝜋`

{
𝑟2 + 2𝜖2

𝑟3𝜖
I + 1

𝑟3𝜖
rrT

}
(2)

where 𝑟𝜖 =
√
𝑟2 + 𝜖2, 𝜖 is a small positive regularization constant,

and u(x) = S𝜖 (x, y)f . In 2D, we follow the regularization by de Goes
and James [2017] to get

S𝜖2𝐷 (x, y) = 1
4𝜋`

{(
𝜖2

𝑟2𝜖
− ln 𝑟𝜖

)
I + 1

𝑟2𝜖
rrT

}
. (3)

As Eq. 1 is linear, we can superpose regularized Stokeslets placed
at different positions to express more complex flows. Moreover, we
can directly specify the velocities at user-defined control points by
constructing a linear system and solving for the forces. However,
the baseline MRS outlined above considers velocity and force de-
grees of freedom located only at discrete (isolated) point locations.
Properly modeling velocity constraints applied continuously along
curves with this naive approach would require sampling points very
densely along the curve to achieve the desired quality (Fig. 2), and
that comes with a high computational cost because of the associated
huge number of degrees of freedom.

3 CONSTRAINTS ALONG POLYLINES
We choose to represent such curves to specify velocities (control
curves) as polylines C and linearly interpolate the velocity specified
at the polyline vertices to define the velocity along them, i.e., f (x) =
Φ(x)f, whereΦ(x) is the linear interpolationmatrix and f represents
the stacked vertex force stored at vertices along the polylines. Once
f is given, one can compute the velocity at any point x by

u(x) =
(∫

C
S𝜖 (x, y)Φ(y) d𝑠y

)
f. (4)

One may be tempted to construct a linear system to find the force
by requiring that the velocity residual, computed with this equation,
evaluate to zero only at the vertex positions of the control curves.
However, such a collocation method still yields artifacts when the
vertex sampling along the control curves is not dense enough (see
Fig. 2). Instead, we consider weighted error residuals along the
control curves: a Galerkin discretization gives the linear system(∫

C
ΦT (x)Φ(x) d𝑠x

)
u =

(∬
C×C

ΦT (x)S𝜖 (x, y)Φ(y) d𝑠y d𝑠x
)
f,

(5)
where u represents the stacked velocity values at vertices of the
polylines. Given u, we first solve Eq. 5 to find f. Once we find f, we
can evaluate Eq. 4 to find the velocity at any point in space.

While the regularization parameter 𝜖 is typically a constant in
MRS, we found that defining it as a function 𝜖 (y) over the control
curves adds further flexibility in defining velocity fields. Effectively,
this varying 𝜖 serves as the influence distance.

Note that the related work by de Goes and James [2017] considers
the generalization of MRS to elasticity problems and shows several

Galerkin (ours) Collocation Point-based

Figure 2: We compare the velocity field produced by Galerkin
(left), collocation (middle), and point-based (right) discretiza-
tions with curves having different sampling rates. From the
top, we have 512, 11, and 7 vertices along the control curve.
For a dense set of points, all three methods perform equally
well, but for a sparse set of points, the velocity field from
the Galerkin method best follows the control curve. In the
bottom row, we can observe that the only velocity we get with
Galerkin discretization can respect the horizontal velocity
along the long horizontal edge of the input control curve.

https://www.sidefx.com/docs/houdini20.5/nodes/dop/popcurveincompressibleflow.html


Galerkin Method of Regularized Stokeslets for Procedural Fluid Flow with Control Curves

(a) Control Curve (b) Velocity (c) Angular Velocity (d) Coupled (e) Decoupled

Figure 3: We specify a velocity of constant magnitude, an angular velocity of constant magnitude, or both, along the control
curve (a). We visualize the resulting velocity field on the vertical and horizontal planes by projecting the colored vectors, which
represent the velocities, to the two planes. We can specify the velocity and angular velocity independently (b, c) or at the
same time (d, e). When we perform the coupled solve of velocity and angular velocity (d), the result slightly differs from the
decoupled one (e). While the coupled solve (d) respects the input constraints better, we found that the result of the decoupled
solve (e), which outputs the sum of the velocity due to velocity and angular velocity control, is more intuitive given (b) and (c).

extensions, but they did not consider the constraints on control
curves. Thus, our contribution is complementary to theirs.

4 ANGULAR VELOCITY CONTROL
In 3D, it can be desirable to have control over the angular velocity
in addition to or instead of the (linear) velocity (Fig. 3). We adapt
the twist control for elastic displacement control introduced by
de Goes and James [2017] to our context. While in theory we can
constrain the angular velocity relative to any direction vector, we
focus on constraining it along the curve’s tangent direction.

The velocity field incurred due to a regularized point-concentrated
torque with magnitude 𝜏 in the tangential direction of the curve at
point y, ty, can be expressed as

u(x) = 2𝑟2𝜖 + 3𝜖2

4𝜋𝑟5𝜖
r × ty 𝜏 . (6)

We can also obtain the corresponding angular velocity field 𝝎 (x)
by taking the curl of Eq. 6 and multiplying it by 0.5:

𝝎 (x) = − 1
8𝜋𝑟7𝜖

{
(10𝜖4 − 7𝜖2𝑟2 − 2𝑟4) (tx · ty)

+(21𝜖2 + 6𝑟2) (r · tx) (r · ty)
}
𝜏

(7)

This expression allows the direct control of angular velocity along
the curves, analogous to how we can directly specify the velocity
along the curves. We can also derive the angular velocity along due
to the regularized point-concentrated force by taking the curl of
u(x) = S(x, y)f and multiplying it by 0.5:

𝝎 (x) = 2𝑟2𝜖 + 3𝜖2

16𝜋𝑟5𝜖
(r × tx)T f . (8)

Just like Section 3, we use Galerkin discretization to find the force
and torque along the curve, such that the resulting velocity and
angular velocity conform to those specified along the curve. We
can augment the linear system, which describes the relationship be-
tween velocity and force (Eq. 5), with these additional relationships
between velocity and torque (Eq. 6), torque and angular velocity
(Eq. 7), and force and angular velocity (Eq. 8). Once we find the
force and torque along the curve, to get the resulting velocity field
at any point in the domain, in addition to the effect of force on

velocity in Eq. 4, we compute the effect of torque on velocity as
well. We can similarly compute the angular velocity.

We observed that decoupling the velocity-force and angular
velocity-torque solves and adding their effects later may give more
intuitive control, so we also offer such an option in our tool.

5 COMPUTATIONAL COMPLEXITY
Consider solving the Galerkin-discretized systems, such as Eq. 5.
We can evaluate the left-hand side, which contains only the known
quantities (velocity and angular velocity), in O(𝑁 ) time and mem-
ory, where 𝑁 is the number of vertices in the input polylines, since
we can compute the effect of matrix multiplication directly without
explicitly forming the matrix. For the right-hand side, we evaluate
the right-hand-side matrix explicitly, which costs O(𝑁 2) time and
memory. This matrix is dense, and solving the linear system costs
O(𝑁 3) computation. While prior work on related techniques [Chen
et al. 2024] discuss this cost associated with dense matrix opera-
tions as a limitation, it is not a significant problem in our case as
we only have curves as the integral domains, and the problem size
is typically small. For our typical application of authoring a static
velocity field, the computation of the unknown quantities (force
and torque) occurs only once. Once we find the force (and torque),
reconstructing the velocity (and angular velocity) costs O(𝑁𝑀),
where𝑀 is the number of evaluation points. While𝑀 can be large,
𝑁 is typically small.

We used a 3-point Gaussian quadrature to evaluate integrals
over each line segment. As most of the computation is trivially
parallelizable, we implemented most parts of the algorithm on GPU
using OpenCL, except for the linear system solve.

6 RESULTS
Our method can specify the velocity and angular velocity indepen-
dently or at the same time via a coupled solve or a decoupled solve
(Fig. 3). We can change the regularization parameter 𝜖 to control the
velocity and angular velocity influence distance from the control
curves (Fig. 4). Fig. 5 demonstrates velocity control in 2D space.
Applying the 3D version of our method in 2D still gives a valid
incompressible field in 3D, but it may not necessarily give a 2D



Ryusuke Sugimoto, Jeff Lait, Christopher Batty, and Toshiya Hachisuka

incompressible field. Thus, the 2D version is preferred for 2D scenes.
The (pre)computation of forces in Fig. 1 took about 0.06 seconds,
and the evaluation of velocities at the leaf positions took about
0.003 seconds per frame on a MacBook Pro with M1 Pro. There are
290 vertices along the control curve and 581 velocity evaluation
points in this scene. We provide the Houdini project file used to
generate the results in the paper as supplemental material.

7 CONCLUSION AND DISCUSSION
We developed a method to design an incompressible velocity field
based on polylines with velocity and optionally angular velocity
specified along them. Combining the method of fundamental solu-
tions with Galerkin discretization allowed for intuitive control of
the velocity field while limiting the degrees of freedom so that the
dense matrix operation cost does not grow significantly.

Our method could naturally be extended for velocity specified
over surfaces such as triangle meshes to enable no-slip boundary
behavior over solid obstacles in the scene. One can also consider
adding normal velocity constraints for free-slip boundaries by aug-
menting our method with the fundamental solutions for the Laplace
equation, following a potential flow assumption. Our early pro-
totype of such extensions found that the accuracy of the result
depends heavily on the mesh resolution. Moreover, the 1𝐷 × 1𝐷
integral domain in Eq. 5 would become 2𝐷 × 2𝐷 for the Galerkin
discretization of such extensions, which would significantly in-
crease the computational cost. Further work is needed to make
such extensions more practical.

𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.10

Figure 4: We specify a constant magnitude velocity along the
bunny curve with three different constant 𝜖 values. Changing
the 𝜖 value effectively changes the influence distance.

Figure 5: Given four control curves with constant magnitude
velocity constraints pointing toward the center (left), we use
our 2D version (middle) and 3D version (right) of our method
to get an incompressible velocity field, respectively. With the
3D version, the field is not incompressible in the 2D slice.

With our method, the resulting velocity field has a fixed falloff as
𝑟 → ∞. We could adapt the regularized fundamental solutions with
faster falloff [de Goes and James 2019] if desired. For a slower falloff,
we could achieve this by setting zero traction boundary conditions
on a large sphere that fully contains the computational domain;
however, this method comes with the discretization resolution and
computational cost problems mentioned in the previous paragraph.

To support velocity or traction constraints over surfaces, using
a fine surface discretization with acceleration techniques such as
the fast multipole method [Greengard and Rokhlin 1997] with a
carefully designed preconditioner [Chen et al. 2024] to handle these
cases would be an interesting future direction.

ACKNOWLEDGMENTS
The majority of this project has been completed while the first
author was employed by Side Effects Software Inc. This research
was partially funded by NSERC Discovery Grants (RGPIN-2021-
02524 & RGPIN-2020-03918), CFI-JELF (Grant 40132), and a grant
from Autodesk. The first author was partially funded by the David
R. Cheriton Graduate Scholarship.

REFERENCES
Blender Online Community. 2024. Blender 4.2. https://www.blender.org/ Computer

Software.
Robert Bridson, Jim Houriham, and Marcus Nordenstam. 2007. Curl-Noise for Pro-

cedural Fluid Flow. ACM Trans. Graph. 26, 3 (jul 2007), 46–es. https://doi.org/10.
1145/1276377.1276435

Jiong Chen, Florian Schäfer, and Mathieu Desbrun. 2024. Lightning-fast Method of
Fundamental Solutions. ACM Trans. Graph. 43, 4, Article 77 (jul 2024), 16 pages.
https://doi.org/10.1145/3658199

Ricardo Cortez. 2001. The Method of Regularized Stokeslets. SIAM Journal on Scientific
Computing 23, 4 (2001), 1204–1225. https://doi.org/10.1137/S106482750038146X

Ricardo Cortez, Lisa Fauci, and Alexei Medovikov. 2005. The method of regularized
Stokeslets in three dimensions: Analysis, validation, and application to helical
swimming. Physics of Fluids 17, 3 (02 2005). https://doi.org/10.1063/1.1830486
031504.

Fernando de Goes and Doug L. James. 2017. Regularized Kelvinlets: Sculpting Brushes
Based on Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40
(jul 2017), 11 pages. https://doi.org/10.1145/3072959.3073595

Fernando de Goes and Doug L. James. 2019. Sharp Kelvinlets: Elastic Deformations with
Cusps and Localized Falloffs. In Proceedings of the 2019 Digital Production Symposium
(Los Angeles, California) (DigiPro ’19). Association for Computing Machinery, New
York, NY, USA, Article 2, 8 pages. https://doi.org/10.1145/3329715.3338884

L. Greengard and V. Rokhlin. 1997. A Fast Algorithm for Particle Simulations. J. Comput.
Phys. 135, 2 (1997), 280–292. https://doi.org/10.1016/0021-9991(87)90140-9

Side Effects Software Inc. 2024. Houdini 20.5. https://www.sidefx.com/docs/houdini/
Computer Software.

https://www.blender.org/
https://doi.org/10.1145/1276377.1276435
https://doi.org/10.1145/1276377.1276435
https://doi.org/10.1145/3658199
https://doi.org/10.1137/S106482750038146X
https://doi.org/10.1063/1.1830486
https://doi.org/10.1145/3072959.3073595
https://doi.org/10.1145/3329715.3338884
https://doi.org/10.1016/0021-9991(87)90140-9
https://www.sidefx.com/docs/houdini/

	Abstract
	1 Introduction
	2 Method of Regularized Stokeslets
	3 Constraints along Polylines
	4 Angular Velocity Control
	5 Computational Complexity
	6 Results
	7 Conclusion and Discussion
	Acknowledgments
	References

