
Projected Walk on Spheres: A Monte Carlo Closest Point Method for
Surface PDEs - Supplemental Note
RYUSUKE SUGIMOTO, University of Waterloo, Canada
NATHAN KING, University of Waterloo, Canada
TOSHIYA HACHISUKA, University of Waterloo, Canada
CHRISTOPHER BATTY, University of Waterloo, Canada

A GREEN’S FUNCTIONS AND THEIR DERIVATIVES
We list Green’s functions on a ball with radius 𝑅 in R3 and their
derivatives for readers’ convenience. As Sawhney and Crane [2020]
summarized, when x is at the center of the ball, the Green’s function
for the Poisson equation is
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and the green’s function for the screened Poisson equation is
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where r = y − x and 𝑟 = ∥r∥2.
The gradients of 𝐺 and 𝐺𝜎 with respect to x when x is at the

center of the ball are
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and
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We additionally derive ∇x𝐺 (x, y) in the general case when x is
not at the center of the ball:

∇x𝐺 (x, y) = − 1
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where q = 𝑦x − (𝑅2/𝑦)y, 𝑦 = ∥y∥2, and 𝑞 = ∥q∥2. We also have
∇z𝐺 (x, z) = ∇z𝐺 (z, x) due to the symmetry of 𝐺 . We use this ex-
pression for problems with a divergence of a vector field as their
source term.
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B DIVERGENCE SOURCE TERM
For the solution estimator, when the source term 𝑓 = ∇ · h, the
volume term converts to∫

𝐵𝑟 (x)
𝑓 (z)𝐺 (x, z) dz

=

∫
𝐵𝑟 (x)

(∇z · h(z))𝐺 (x, z) dz,

=

∫
𝜕𝐵𝑟 (x)

h(z) · n(z)𝐺 (x, z) dz −
∫
𝐵𝑟 (x)

h(z) · ∇z𝐺 (x, z) dz,

= −
∫
𝐵𝑟 (x)

h(z) · ∇z𝐺 (x, z) dz,

(16)

and we evaluate the last integral instead, which does not require the
explicit evaluation of the divergence of h. We generate the samples
to estimate the converted volume integral with 𝑝 (z) ∝ 1/∥x − z∥22,
so the singularity of ∇z𝐺 cancels out.

C GRADIENT ESTIMATION
The gradient estimator replaces the integral equation for the first
step of recursion with

∇𝑢 (x) = 1
|𝐵𝑟 (x) |

∫
𝜕𝐵𝑟 (x)

𝑢 (y)n(y) dy +
∫
𝐵𝑟 (x)

𝑓 (z)∇x𝐺 (x, z) dz,

(17)
where |𝐵𝑟 (x) | is the volume of the ball and n(y) is the outward
unit normal of the ball at y. For the screened Poisson equation,
we multiply the first term by 𝑐𝑟,𝜎 and replace ∇𝐺 in the second
term with ∇𝐺𝜎 to get a similar integral equation. To evaluate the
integrals, we uniformly sample a point on the sphere for the first
term, and we generate the samples with 𝑝 (z𝑖 ) ∝ 1/∥x − z𝑖 ∥22 for
the second term. The surface gradient of the solution to a surface
PDE does not have a normal component, but the estimated solution
may have a nonzero normal component before convergence. Thus,
to improve the estimate, we set the normal component(s) of the
estimated gradient to zero as a post-processing step.

D CONVERGENCE STUDY SETUP
We used the following problems to generate the error convergence
plots in Fig. 4. Note that we finely discretized the surfaces we de-
scribe below to obtain the data we show in the figure.

(a). The helix curve we use has three turns, has a radius of 1, and
the endpoints have a height difference of 2. We solve the Laplace
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equation defined along the curve length 𝜙 as

𝜕2𝑢S
𝜕𝜙2

= 0,

𝑢S (0) = 0,
𝑢S (𝜓 ) = 1,

(18)

where the boundary conditions are specified at the two ends of the
curve, 𝜙 = 0 and 𝜙 = 𝜓 . The analytical solution is 𝑢S (𝜙) = 𝜙/𝜓 .

(b) to (d). The problem we solve is defined along the curve length
𝜙 as

𝜕2𝑢S
𝜕𝜙2

= 0.02,

𝑢S (0) = 0,
𝑢S (𝜓 ) = 1,

(19)

where the boundary conditions are specified at the two ends of the
curve, 𝜙 = 0 and 𝜙 = 𝜓 , similar to (a). The analytical solution is
𝑢S (𝜙) = 0.01𝜙2 + 1−0.01𝜓 2

𝜓
𝜙 . The helix curve in (b) is identical to

the one in (a). The z-order curve in (c) and (d) is defined using 8
points, (±1.0,±1.0,±1.0).

(e). This scene is one of the scenes in the grid-based CPM paper
by King et al. [2023]. On a unit circle, we have a two-sided Dirichlet
boundary. In polar coordinates, the problem we solve in terms of
the angle \ is

𝜕2𝑢S
𝜕\2

= −2 cos(\ − \𝑐 ),

𝑢S (\−𝑐 ) = 2,

𝑢S (\+𝑐 ) = 22,

(20)

where \𝑐 = 1.022𝜋 is the position of the Dirichlet boundary. The
analytical solution to this problem is 𝑢S (\ ) = 2 cos(\ −\𝑐 ) + 10

𝜋 (\ −
\𝑐 ).

(f). The surface we used is a torus with a major radius 𝑅 = 3 and
a minor radius 𝑟 = 1. The Dirichlet boundary curve is a torus knot
expressed as a parametric curve

𝑥1 (𝑠) = 𝑣 (𝑠) cos(𝑎𝑠), 𝑥2 (𝑠) = 𝑣 (𝑠) sin(𝑎𝑠), 𝑥3 (𝑠) = sin(𝑏𝑠), (21)

where 𝑣 (𝑠) = 𝑅 + cos(𝑏𝑠), 𝑎 = 3, 𝑏 = 7, and 𝑠 ∈ [0, 2𝜋]. We solve
the Laplace equation on the torus with boundary condition sin(𝑠)
along the curve. We used the grid-based CPM implementation of
King et al. [2023] with a grid spacing of 0.02 to generate a reference
solution and measured the error of PWoS against it.

(g) and (h). The surface we used for these setups is the one given
by Dziuk [1988] and later used in multiple CPM works [Chen and
Macdonald 2015; King et al. 2023]. The surface is expressed as S =

{x ∈ R3 | (𝑥1 − 𝑥3)2 + 𝑥22 + 𝑥23 = 1}. The problem we solve is

ΔS𝑢S (x) − 𝑢S (x) = −𝑓S (x), x ∈ S, (22)

where 𝑓S has an analytical, yet complex, expression we can derive
as in the work by Chen and Macdonald [2015], so the solution of
the problem becomes 𝑢S (x) = 𝑥1𝑥2. For (g), we use a unit circle
on the 𝑥1𝑥2-plane with the analytical solution specified on it as the
boundary value as the Dirichlet boundary. For (h), we did not use

any boundary to show the algorithm’s convergence for the screened
Poisson equation without any boundaries.

(i) to (p). The scenes consider the unit sphere with a spherical
harmonic function as the analytical solution as is done in the study
of mesh Laplacians [Bunge and Botsch 2023]. The sphere mesh is
punched inward at 𝑥3 = 0.25 for (m) to (p) to test the algorithm
on a geometry with sharp corners. Given a spherical harmonic

𝑌 3
2 (x) =

1
4

√︃
105
𝜋 (𝑥21 − 𝑥22 )

2𝑥3 with eigenvalue −12 as the solution,
we solve the Poisson equation

ΔS𝑢S (x) = −12𝑌 3
2 (x), x ∈ S, (23)

for (i), (j), (m), and (n) and the screened Poisson equation

ΔS𝑢S (x) − 𝑢S (x) = −13𝑌 3
2 (x), x ∈ S, (24)

for (k), (l), (o), and (p). For (i), (k), (m), and (o), we use the unit circle
on the 𝑥1𝑥2-plane as the Dirichlet boundary, and for (j) and (n), we
use the unit semicircle where 𝑥2 > 0 as the Dirichlet boundary. We
observe the expected convergence behavior with all of the cases in
(i) to (p) and suspect that it has something to do with the fact that
the source term is a constant multiple of the solution.
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