
Water Simulation and Rendering from a Still Photograph
Supplemental Material

Ryusuke Sugimoto
University of Waterloo
Waterloo, ON, Canada
rsugimot@uwaterloo.ca

Mingming He
Net�ix

Los Angeles, CA, USA
hmm.lillian@gmail.com

Jing Liao
City University
of Hong Kong

Kowloon, Hong Kong
jingliao@cityu.edu.hk

Pedro V. Sander
The Hong Kong University
of Science and Technology

Kowloon, Hong Kong
psander@cse.ust.hk

A DATASET FORWATER SEGMENTATION
To train the water segmentation network, we �rst collect 1, 995
real water images (1, 895 for training and 100 for testing) to form
a real water image dataset with ground truth annotation for wa-
ter from multiple public scene datasets, SUN [Xiao et al. 2010],
ADE20K [Zhou et al. 2017] and Places [Zhou et al. 2014]. However,
such a small amount of training data results in over�tting and lim-
ited generalization capacity. Thus, we automatically augment the
training data using a synthetic water image dataset with 10, 000 ran-
domly selected images from the texture image generation dataset
described in Section B. To increase the diversity, we combine ei-
ther background from the real water image dataset or foreground
objects from the COCO dataset [Lin et al. 2014]. When using both
datasets, we train the network for the same number of iterations on
each of them. By combining the synthetic data with the real data,
the segmentation accuracy is largely improved, which can be seen
from the mean intersection over union (IOU) metric on the testing
dataset, 0.8405 for the model trained with the synthetic data while
0.8160 for the model without such augmentation.

B DATASET FOR TEXTURE IMAGE
GENERATION

We use the renderer described in Section 5 of the paper to create
the dataset. The parameters are chosen randomly from a valid input
range. The water surface color is chosen uniformly randomly from a
valid subspace of HSV color space and then converted to RGB space.
This limits the color range to be “blueish” while avoiding overly
bright or overly vivid colors. The spherical harmonics constants
are used to approximate the surrounding global lighting e�ects.
We randomly generate a set of colors for several points on a unit
hemisphere and use them to generate SH constants. Thus, we can
generate in�nitely many combinations of SH constants to ensure
enough variety in lightning. In place of the re�ection texture, we use
an image that is �ipped upside-down. Even though the re�ection on
water surface should be distorted in real scenes, the �ipped image
is a good approximation. We expect that what the re�ection texture
generation network should learn is irrelevant to such distortions.
Based on this assumption, we chose images to be used as re�ection
textures from a subset of the Places database [Zhou et al. 2014] with
outdoor scenes and sky images from the SWINySEG[Dev et al. 2019]
dataset. In our dataset generation, we further made a simpli�cation
of the model. We assumed that the water region boundary is a
straight line that lies within a random distance from the patch in
image coordinates. This is required because each re�ection image
patch is supposed to be entirely in a water area and we do not need
any information about the objects outside of the image patch.

Table 1: Parameter set optimized by the cuckoo search algo-
rithm and used by our renderer.

Parameter DoF Range

Wind speed 1 [1.5, 30.0]
Wind direction 1 [0.0, 180.0]
Wave choppiness 1 [0.0, 3.0]
Camera height 1 [1.0, 75.0]
Camera angle 1 [45.0, 105.0]

Camera �eld of view 1 [45.0, 90.0]
Water color 3 [0.0, 1.0]

Level 0 SH lighting coe�cients 3 [0.0, 2.0]
Level 1 SH lighting coe�cients 9 [-1.0, 1.0]

C DETAILS OF TEXTURE IMAGE
GENERATION NETWORK

As mentioned in the paper, the network architecture is based on
UNet with residual blocks. The input patches are of size 224 ⇥ 224.
The encoder consists of series of convolution layers with padding:
3 ⇥ 3 with stride 1, 7 ⇥ 7 with stride 2, 3 ⇥ 3 with stride 2, and 3 ⇥ 3
with stride 2; except the last convolution, each followed by batch
normalization and a ReLU. There are �ve intermediate residual
blocks which are followed by batch normalization and a ReLU. The
decoder contains three upsampling layers of factor two. The �rst
two upsampling layers are respectively followed by concatenation
of feature map with the corresponding feature from the encoder,
convolution, batch normalization, and a ReLU. The last upsampling
layer is followed by feature concatenation and convolution layers.
The convolution kernels in the decoder are 1 ⇥ 1, 3 ⇥ 3, and 1 ⇥ 1,
in sequential order, all with stride 1.

D PARALLELIZED CUCKOO SEARCH
The energy computation is the most expensive component of our
pipeline. It can be partitioned into frame rendering using the candi-
date parameter set and the DISTS and HSV color histogram energy
evaluation. Rendering and DISTS evaluation accounts the majority
of execution time. To improve e�ciency, we perform evaluation
for : � 1th iteration and rendering for :th iteration concurrently
(Algorithm 2). The concurrent execution of rendering and energy
evaluation allows us to maximize the GPU utilization from 80-90%
to 98%, and allows more energy evaluation per unit time. While the
optimization process is not completely equivalent to the original
serial version because of its lazy update feature, our experiments
validate the e�ectiveness of the method (Figure 11). At the begging

https://orcid.org/0000-0001-5894-0423
https://orcid.org/0000-0002-9982-7934
https://orcid.org/0000-0001-7014-5377
https://orcid.org/0000-0002-0435-9833

Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander

ALGORITHM 1: Cuckoo Search
while termination condition not met do

forall nest =8 do
Get a cuckoo egg x08 by Lévy �ight from x8 .
Choose a random nest = 9 to lay the egg.
if (2>A4 (x08) < (2>A4 (x09) then

replace x9 with x08 .
end

end
forall nest =8 do

Get a cuckoo egg x08 by mutation from x8
if (2>A4 (x08) < (2>A4 (x8) then

replace x8 with x08 .
end

end
Replace the worst : eggs with randomly generated eggs.

end
return x14BC

ALGORITHM 2: Parallel Cuckoo Search (:th iteration)
solutions_lévy: generate_solutions_lévy(curr_nests)
solutions_mut: generate_solutions_mut(curr_nests)
solutions_rand: generate_solutions_rand(curr_nests)

frames:�1 receive_rendered_frames()
submit_rendering_tasks([solutions_lévy: , solutions_mut: ,

solutions_rand:])
[scores_lévy:�1, scores_mut:�1, scores_rand:�1]
 evaluate_energy_function(frames:�1)

update_nests_lévy(solutions_lévy:�1, scores_lévy:�1)
update_nests_mut(solutions_mut:�1, scores_mut:�1)
update_nests_rand(solutions_rand:�1, scores_rand:�1)

of evaluation, there is no signi�cant di�erence of the energy curve
due to the lazy update of candidate solutions. However, at later iter-
ations, the di�erence in number of energy evaluations per unit time
between the serial implementation and the parallel implementation
lead to the di�erence of energy curves.

Figure 11: Comparison of the serial and parallel cuckoo
search algorithms. All �gures show average curves for 55
test images. On average, the termination condition is met
after 269 iterations (212 seconds) with an average energy of
0.389.

(a) input (b) w/o optimization (c) with optimization

Figure 12: In most cases, such as in the top row, there is no
sacri�ce in quality when performing the re�ection compu-
tation optimization. However, in some complex boundaries,
such as in the bottom row, some artifacts can be noticed. The
second input image is from Places [Zhou et al. 2014].

Figure 13: Optimization processes for the scenes in Fig. 1
and Fig. 8 �rst row with 10 di�erent initial parameter sets,
respectively. The vertical axis represents the energy, and the
horizontal axis represents the number of iterations. Though
the optimization process depends on the initial parameter
set, they converge after enough iterations.

E INFLUENCE OF INITIAL PARAMETERS IN
CUCKOO SEARCH

Because of the random nature of the search, the optimization pro-
cess does depend on the initial candidate parameter set. However,
we set a conservative enough threshold as the termination condi-
tion to let the optimization process reach small enough energy so
that it will not give us a noticeable visual di�erence with respect to
the initial candidate parameter set (see Fig. 13 and Fig. 14). We can
choose an even stricter termination condition if desired.

F STUDY ON THE DESIGN OF THE ENERGY
FUNCTION

In the design of the energy function, we chose the DISTS metric
because it is not sensitive to local variations caused by wave dy-
namics, as opposed to other simpler image metrics. In Fig. 16, when
the L1 loss is used as the energy function instead of DISTS, it fails

Water Simulation and Rendering from a Still Photograph - Supplemental Material

(a) input (b) best result (c) worst result

Figure 14: Comparison of the best and worst optimization
results from Fig. 13. Our termination criterion is designed
conservative enough and even the optimization processes
that terminated with highest (worst) scores gives sets of pa-
rameters that give us plausible renderings. Input images:
Edward Nicholl/Flickr (top) and - Paul -/Flickr (bottom).

to estimate the water dynamics completely, generating waves with
either very high or very low frequency components only. These
are expected results because we do not expect the wave dynamics
of the input image and the rendered results to match exactly, and
simple pixel-wise metrics cannot compute the perceptual di�erence
between the two images. In addition to DISTS, the color similar-
ity metric is employed to further penalize the color dissimilarity.
In Fig. 16, we can observe that the addition of color dissimilarity
energy lets the optimized parameters generate more visually plau-
sible results by correcting the overall color shifts that are otherwise
present in some results. We limit our discussion to the qualitative
evaluation in this work because a quantitative evaluation would be
di�cult because of the local variations of water dynamics.

G RENDERING OPTIMIZATIONS
The basic method for computing the re�ection color described in the
paper is computationally ine�cient mainly due to the ray marching
step. We can reduce the number of iterations by using larger ray
marching step sizes, but that can signi�cantly degrade rendering
quality. We observe that the collision point for the same re�ection
vector only changes when the viewpoint moves (user zooms or
pans). Based on these observations, we can �rst precompute the
ray marching step and reuse the results for multiple frames while
the viewpoint is static.

Furthermore, in the precomputation step, we partition pixels
in 4 ⇥ 4 groups in image space. For each group of 16 pixels, we
precompute the potential collision points in screen space for 16 re-
�ection directions uniformly distributed in the hemisphere, storing
the results in a texture. In our implementation, we store at most two
collision points (�rst and last) for each direction within each pixel
group. The rationale is that the last collision should be against the
same common “background” wall, while the �rst ray collision may
be against di�erent smaller walls. Finally, in the rendering pass,
we retrieve the screen space collision points by interpolating the
precomputed collision points in screen space instead of computing
anew.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Real Rendered

(a) statistics

88.89% 91.67%

86.11% 86.11%

94.44% 83.33%

97.22% 83.33%

88.89% 83.33%

80.56% 50.00%

50.00% 47.22%

83.33% 36.11%

72.22% 36.11%

88.89% 36.11%

Real Rendered Real Rendered

(b) examples

Figure 15: User study results. (a) illustrates the percentage
of real/rendered images selected as real in every case; and
(b) demonstrates the top 5 cases where the rendered images
are thought as most photorealistic (left) and the top 5 cases
where the rendered images are selected as least photoreal-
istic (right). In (b), the numbers indicate the percantages of
real/rendered images selected as real.

These optimizations increase the performance by approximately
10⇥, yielding accurate results in the vast majority of cases, but occa-
sionally producing artifacts in complex boundary regions (Fig. 12).
All results in the paper and supplemental material use these opti-
mizations.

Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander

H DETAILS OF USER STUDY
The user study is designed to better evaluate our photorealistic
synthesis results despite the di�erence in their water dynamics
compared to the input images. So the test cases in the user study
mix real images and synthesis results, which are then shown to
users in random order. More speci�cally, we �rst randomly selected
30 input images from the testing dataset (which has 67 images in
total) and then generated 30 test cases for every user. In each case,
either the input image or its rendered result was shown to the user,
who was asked to determined whether it was a photo or synthetic
result. Users were given unlimited time to view the image and
make a choice. A total of 72 users participated and 2160 answers
were collected. The same number of real and rendered images were
shown. The result shows that users successfully identi�ed these
real images as real 81.67% of the time, indicating that the users
understood the task, while the rendered images fooled users in
65.46% of cases, which shows that most of our generated results are
thought as realistic as real images. Fig. 15 (a) shows the percentage
of real/render image selected as real in each case, and Fig. 15 (b)
demonstrates �ve most photorealistic and �ve least photorealistic
rendered images voted by users. Note that our method is able to

generate photorealistic results even though the predicted water
animation may not exactly match the input image.

REFERENCES
S. Dev, A. Nautiyal, Y. H. Lee, and S. Winkler. 2019. CloudSegNet: A Deep Network

for Nychthemeron Cloud Image Segmentation. IEEE Geoscience and Remote Sensing
Letters 16, 12 (2019), 1814–1818. https://doi.org/10.1109/LGRS.2019.2912140

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 8693), David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne
Tuytelaars (Eds.). Springer, 740–755.

Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. 2010.
SUN database: Large-scale scene recognition from abbey to zoo. In The Twenty-
Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San
Francisco, CA, USA, 13-18 June 2010. IEEE Computer Society, 3485–3492.

Bolei Zhou, Àgata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. 2014.
Learning Deep Features for Scene Recognition using Places Database. In Advances
in Neural Information Processing Systems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger (Eds.). 487–495.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
2017. Scene Parsing through ADE20K Dataset. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE
Computer Society, 5122–5130.

https://doi.org/10.1109/LGRS.2019.2912140

Water Simulation and Rendering from a Still Photograph - Supplemental Material

Input DISTS + Color DISTS Only L1

Figure 16: Comparison with parameters estimated with di�erent energy functions for the cuckoo search. From left, inputs,
results with the combination of DISTS and the color metric, results with DISTS metric only, and results with L1 loss. The
results are obtained with 500 iterations for consistency. We obtain the best results using the combination of DISTS and the
color metric. See the main paper for the water masks and the re�ection textures used. The input images: - Paul -/Flickr (�rst),
Edward Nicholl/Flickr (second), Foliez/Pixabay (third), and Unknown/PxHere (fourth).

	A Dataset for water segmentation
	B Dataset for texture image generation
	C Details of texture image generation network
	D Parallelized Cuckoo Search
	E Influence of Initial Parameters in Cuckoo Search
	F Study on the Design of the Energy Function
	G Rendering optimizations
	H Details of user study
	References

