
Water Simulation and Rendering from a Still Photograph
Ryusuke Sugimoto
University of Waterloo
Waterloo, ON, Canada
rsugimot@uwaterloo.ca

Mingming He
Net�ix

Los Angeles, CA, USA
hmm.lillian@gmail.com

Jing Liao
City University
of Hong Kong

Kowloon, Hong Kong
jingliao@cityu.edu.hk

Pedro V. Sander
The Hong Kong University
of Science and Technology

Kowloon, Hong Kong
psander@cse.ust.hk

(a) Input (b) Rendered (c) Edited (d) Msk.&Ref.

Figure 1: Given a single input image (a), our approach estimates the parameters, segmentation mask and re�ection texture
(d) needed to predict and render a realistic animated water surface (b), further enabling interactive editing with the water by
placing synthetic objects (e.g. beach balls) on the surface (c). Input image: - Paul -/Flickr.

ABSTRACT
We propose an approach to simulate and render realistic water
animation from a single still input photograph. We �rst segment
the water surface, estimate rendering parameters, and compute
water re�ection textures with a combination of neural networks
and traditional optimization techniques. Then we propose an image-
based screen space local re�ectionmodel to render the water surface
overlaid on the input image and generate real-time water animation.
Our approach creates realistic results with no user intervention
for a wide variety of natural scenes containing large bodies of
water with di�erent lighting and water surface conditions. Since
our method provides a 3D representation of the water surface,
it naturally enables direct editing of water parameters and also
supports interactive applications like adding synthetic objects to
the scene.

CCS CONCEPTS
• Computing methodologies ! Computer graphics; Image-
based rendering; Computational photography.

KEYWORDS
single-image animation generation, texture prediction, neural net-
works, optimization, screen-space re�ection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9470-3/22/12. . . $15.00
https://doi.org/10.1145/3550469.3555415

ACM Reference Format:
Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander. 2022.
Water Simulation and Rendering from a Still Photograph. In SIGGRAPH
Asia 2022 Conference Papers (SA ’22 Conference Papers), December 6–9, 2022,
Daegu, Republic of Korea. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3550469.3555415

1 INTRODUCTION AND RELATEDWORK
Simulating and rendering water is an extensively studied problem
in traditional computer graphics [Bridson and Müller-Fischer 2007;
Darles et al. 2011]. It involves simulating the water dynamics using
parametric models [Max 1981; Tessendorf 2001] and generating
realistic shading that takes into account various optical properties
of the water surface [Tessendorf 2001]. Empirical parametric models
can generate visually appealing water geometry and appearance
and allow the result to extend arbitrarily in space and time. However,
they usually rely on a large number of parameters to model the
water surface dynamics (e.g. wind speed, wind direction, etc.) and
lighting conditions. This often requires much time and manual
e�ort to tune the parameters to achieve the desirable e�ect.

In this work, we are interested in automatically animating the
water surface in a still photograph. In particular, we seek to gener-
ate and render the high-�delity motion of large water bodies such
as lakes and seas in a fully automatic manner. To avoid crossing into
the “uncanny valley”, previous methods either require signi�cant
user annotation to specify the water motion in the image [Chuang
et al. 2005; Le et al. 2022; Okabe et al. 2018], such as the dynamic
region boundary and �ow directions in the concurrent work of Le
et al. [2022], or assume the availability of video examples or mul-
tiple frames containing the target water motion [Gui et al. 2012;
Lin et al. 2007; Okabe et al. 2009, 2011; Prashnani et al. 2017; Sun
et al. 2003] and use such inputs to drive image animation. The
video-driven methods by Gui et al. [2012]; Okabe et al. [2009, 2011];
Sun et al. [2003] extract the motion �eld (e.g. optical �ow) from
a driving video and transfer motion into the image, allowing the

https://orcid.org/0000-0001-5894-0423
https://orcid.org/0000-0002-9982-7934
https://orcid.org/0000-0001-7014-5377
https://orcid.org/0000-0002-0435-9833
https://doi.org/10.1145/3550469.3555415
https://doi.org/10.1145/3550469.3555415
https://doi.org/10.1145/3550469.3555415

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander

Segmentation Cuckoo Search

Parameters
- Water
- Lighting
- Camera

Input

Output

Reflection Texture

…

Candidate Solutions

Render Frames

Evaluate Energy

Update Candidate
Solutions

Water
Segmentation

Mask

Reflection
Texture

UNet

DeepLab

DeepLab

DeepLab

Inpaint

Image-Based
Renderer

Figure 2: System overview. Given an input image, we �rst segment water, then predict re�ection texture from the water
segment, and estimate other parameters. With the re�ection texture and parameters, we generate the water animation using
an image-based renderer.

still water to come alive and mimic the motion in the driving video.
To avoid the instability of optical �ow, Prashnani et al. [2017] pro-
pose to use phase variations to model the motion. However, these
methods cannot decouple appearance and dynamics in the target
image, which limits their capacity in processing the water surface
with distorted �uctuation and re�ectance. The recent works [Endo
et al. 2019; Tesfaldet et al. 2018] decouple appearance and dynam-
ics using two pre-trained convolutional neural networks (CNNs).
Tesfaldet et al. [2018] propose to transfer dynamics only from the
driving video while preserving the appearance in the target image.
The work by Endo et al. [2019] predicts optical �ows to tackle the
single-image animation generation task. Since these methods use
spatially-invariant statistics to represent the appearance, they are
also limited to processing spatiotemporally homogeneous data. Re-
cently, another impressive work [Holynski et al. 2021] proposes a
motion representation based on Euler integration and synthesizes
plausible motion for a given image by learning from a large-scale
video dataset. These non-parametric methods synthesize dynamic
water using a pure generationmodel, much like a black box, without
building physically correct geometry and re�ectance, thus limiting
the resulting quality and resolution and also resulting in a lack of
control regarding the appearance, diversity, and consistency of the
animated water.

Taking only a single image of a target scene, we aim to animate
and render the water regions. Our work lies in the con�uence of
traditional parametric models and learning-based non-parametric
models of water generation in an attempt to combine the best of
both worlds: the artifact-free rendering and �exible control of para-
metric models and the generalization ability of non-parametric
models. We represent the water geometry and appearance using
an empirical parametric model [Tessendorf 2001], and automati-
cally estimate the model parameters from the input image using

both optimization-based and learning-based methods. With the
estimated parameters, we can simulate and render the water that
is visually similar to the input photograph and directly use the
parametric model for creation and editing of the water animation.

More speci�cally, the parameter estimation is the core of our
method. It is a challenging ill-posed problem since we need a full set
of parameters from a single input image, including numerical pa-
rameters of appearance (i.e. color), dynamics (i.e. wind speed, wind
direction, and wave choppiness), cameras (i.e. angle, height, and
�eld of view) and environmental lighting (i.e. spherical harmonics
(SH) [Ramamoorthi and Hanrahan 2001]), as well as the re�ectance
of the entire scene. To address these challenges, we �rst formulate
the re�ectance estimation as an image synthesis task of generat-
ing a re�ection texture from the water image using deep neural
networks. Similar methods have achieved great success in many
related image-based prediction tasks from a single image, such as
distortion correction [Li et al. 2019a,b], re�ection removal [Li et al.
2020; Wen et al. 2019], and denoising [Guo et al. 2019; Wei et al.
2020]. Due to practical constraints, we synthesize water images
with realistic re�ection e�ects for the supervised learning. Next, to
predict lighting and other water dynamics parameters, we propose
an adaptation of the cuckoo search metaheuristic [Yang and Deb
2009], due to its simplicity and �exibility in exploring di�erent
candidate solutions.

We combine these techniques of parameter estimation together
into a novel system to animate the water surface in a still photo-
graph, as shown in Fig. 2. We �rst develop a progressive framework
for water segmentation of a high-resolution image (Sec. 2). We then
leverage a supervised learning method to predict re�ectance infor-
mation for the water surface as needed by our real-time renderer
(Sec. 3). Next, we use the cuckoo search meta-heuristic to estimate
water surface parameters with a parallelized energy evaluation

Water Simulation and Rendering from a Still Photograph SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

(a) Input (b) Level 1 (c) Level 2 (d) Level 3

Figure 3: Intermediate results of the progressive patch-based
segmentation framework, As the image level and resolution
increase, �ne-detailed segmentation edges are progressively
detected. Input image: Andrea S/Flickr.

scheme (Sec. 4). Equipped with the predicted re�ectance and the
estimated parameters, we customize a real-time renderer with an
e�cient image-based screen space local re�ection method (Sec. 5)
to generate the �nal animation. We demonstrate the e�ectiveness
of our method on a variety of scenes and interactive applications.

2 WATER SEGMENTATION
Semantic image segmentation is one of the fundamental topics in
computer vision and recently has been solved e�ectively using deep
convolutional neural networks deployed in a fully convolutional
manner [Chen et al. 2018a, 2017, 2018b; Liu et al. 2019; Long et al.
2015; Zhao et al. 2018, 2017]. Although the state-of-the-art systems
propose to segment images at high resolution (usually 1 or 2) by
either incorporating multi-resolution branches [Zhao et al. 2018] or
forming a hierarchical architecture search space in the network [Liu
et al. 2019], their scalability is still limited by computing resources.

To segment a water image at higher resolution (e.g. 4 , 8 or
higher in our application setting, we propose a progressive patch-
based segmentation framework. We �rst build an image pyramid of
multiple levels of detail by iteratively downscaling the input image
to a resolution with the longest edge no large than 512 pixels at the
lowest level. At each level, we dice the image into a set of patches
(512 ⇥ 512 pixels) in a 2D grid structure with 50% overlap between
adjacent patches. Then we start segmenting water on each patch
from the lowest level using a pre-trained model of water segmen-
tation, bilinearly upsampling the segmentation probability to the
next level while iteratively updating the patches with pixel error
larger than a threshold (we set it to 0.2 in our implementation).
For the pixels covered by multiple levels or multiple overlapping
patches, we take the maximum probability as output. Our moti-
vation is that low-level segmentation provides global information
while the high-level segmentation ensures higher accuracy around
boundaries. The iterative re�nement repeats as the level increases
until the image resolution reaches 4 . Then for each patch, we up-
scale its predicted mask to the original resolution using the guided
�lter [He and Sun 2015] to further re�ne the often over-smoothed
segmentation result. Fig. 3 shows the segmentation result of each
level and it can be seen that the segmentation boundary is clearer
at higher levels. The water patch segmentation network is based

(a) Input (b) Ground truth (c) Predicted (d) Rendered

Figure 4: Images from the dataset along with their resulting
predictions. The �rst row shows an example with turbulent
water and a blurry re�ection. The second row shows an ex-
ample where the water is calm and the predicted texture is
sharper. (d) shows the patches rendered using the predicted
re�ection textures (c). Blurry prediction su�ces when the
water is turbulent. Ground truth: Places [Zhou et al. 2014].

on the advanced architecture of Deeplab [Chen et al. 2018a]. For
further details on the training, please refer to the supplemental
material.

3 REFLECTION TEXTURE GENERATION
Next, we aim to generate a re�ection texture. This texture will later
be used during shading of the the water in order to more accurately
model re�ections on the water surface. The rendering algorithm is
described in Sec. 5.

When the water surface is as �at as a mirror, our approach
seeks to generate a sharp re�ection texture, preserving all high
frequency details of the scene in the water re�ection. In contrast,
when the water surface is turbulent, the approach generates a
blurry texture by resulting in a more realistic approximation to the
complex interaction between light and turbulent wave dynamics.

The texture is built on image space and we seek to store the re-
�ected color of thewater surface as if thewater was a completely �at
mirror. The colors are then dilated to the regions beyond the water
surface using an inpainting technique. Due to the high resolution,
overlapping texture patches are �rst predicted by a patch-based
learning network and then stitched together into a full texture map.

Dataset. . Our dataset consists of pairs of an image patch of water
and its corresponding re�ection texture patch. Since the ground
truth of re�ection texture is not available, we create a synthetic
dataset. We use an image patch (as a re�ection texture) and random
parameters to render a water image patch with a size 224 ⇥ 224.
Then, the rendered water image patch and its re�ection texture
patch are treated as a ground truth pair for training (see Fig. 4).
Further details on the dataset can be found in the supplemental
material.

Network architecture. . Our network learns a mapping from the
rendered image patch to its re�ection texture patch. Despite the
reduced rendering model and di�erence between the synthetic im-
ages and real images, this method allows us to generate a re�ection

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander

(a) Input (b) Our method (c) Neural network

Figure 5: Comparison between our method and a neural net-
work approach. The result of the neural network method
in this example lacks the high frequency waves present in
the input image. Furthermore, the overall color is shifted
towards green.

texture from any image with a water surface. The network archi-
tecture is based on UNet [Ronneberger et al. 2015] with residual
blocks [He et al. 2016] and multi-level skip connections between
the encoder and decoder that can preserve sharp edges in re�ection
textures when desired. Note that the blurred re�ection texture that
is generated for turbulent water does not often degrade the quality
of rendering when used, since they will be applied using turbulent
water parameters. Refer to the supplemental material for further
details on the network architecture.

Loss evaluation. . During training, we distinguish water and non-
water regions using a random mask image< drawn from a set of
mask images and their inverses generated using the ground truth
annotation of the COCO dataset [Lin et al. 2014]. We apply the
mask to the input patch (i.e. multiply the mask pixel value to the
input image pixel at each pixel location) and feed it to the network
to get a prediction patch. Notice that the range of mask value is
[0, 1]. This is to simulate real input patches, which may have both
water and non-water regions. Then, the loss is de�ned as

!(G,~) = 1
#

#’
8

(<8 + _(1 �<8)) |G8 � ~8 |, (1)

where # is the number of pixel locations, G8 ,~8 represent the pixel
color of the two patches G and ~ at the pixel location 8 respectively,
and<8 is the mask value at that pixel location. We let _ = 0.1 to
impose a small loss on pixels that are outside of water regions.
We do not expect the network to �ll non-water regions with ac-
curate re�ection colors; we need the network to �ll such regions
with colors that transition smoothly from the neighbouring water
regions.

Stitching and inpainting. During testing, we partition the in-
put image and the mask into patches with 80% overlap in each
dimension and feed each image patch into our network to get its
corresponding re�ection texture patch. These re�ection texture
patches are stitched together using weights following a Gaussian
kernel within the overlap region to ensure a smooth transition. Af-
ter stitching, we inpaint the non-water regions of the full re�ection
images using the method of [Telea 2004]. This is needed since we
may occasionally need to fetch the re�ection color slightly outside
of the water region in cases where the water surface is turbulent.

(a) Input (b) Our method (c) w/o color metric

Figure 6: Comparison between our method with and without
the color similarity metric.

4 PARAMETER ESTIMATION BY CUCKOO
SEARCH

In addition to the segmentation mask and the re�ection texture
presented in the previous sections, the rendering algorithm takes a
21-dimensional vector of wave, wind, camera, and lighting param-
eters. The supplemental material contains a table with all of the
parameters and their respective ranges.

We initially tried to design a neural network similar to the re-
�ection texture generation network that performed parameter in-
ference by creating a synthetic dataset that included ground truth
parameters. However, the predicted parameters did not produce
plausible results when used for rendering, as shown in Fig. 5. The
problem is ill-posed as di�erent sets of parameters may give a
similar output (e.g. high wind speed with a high camera position
vs. low wind speed with a low camera position). We believe that
this ambiguity makes it challenging for the network to learn the
parameters accurately. We investigated di�erent techniques to ex-
plore the space of possible parameter solutions including traditional
optimization methods and learning-based approaches. Finally, we
have found an adaption of the cuckoo search metaheuristic [Yang
and Deb 2009] to be a suitable choice for our ill-conditioned and
non-di�erentiable problem. This is because the cuckoo search does
not assume any speci�c characteristics of the optimization problem
such as convexity and does not require a gradient of the solution.

In our application, we use cuckoo search with an energy func-
tion based on a combination of the DISTS similarity metric [Ding
et al. 2020] and an HSV color histogram metric. For each candi-
date parameter set, we render an image and calculate a distance
between rendered image ~ and the original input image G . We �nd
a parameter set that minimizes this distance.

4.1 Energy Function
As mentioned above, our energy function considers both the DISTS
metric and a color histogram metric:

⇢) + _⇢⇠ , (2)

where ⇢) is DISTS energy, ⇢⇠ is the color dissimilarity energy, and
_ regulates the tradeo� (_ = 1.0 in our implementation).

Texture similarity using DISTS index. Since the water surface
is dynamically changing, we need a distance metric that is not
sensitive to local variations yet globally consistent with human
perceptual scores. We have found that the DISTS index is suitable

Water Simulation and Rendering from a Still Photograph SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

for this task and apply it directly in our approach:

⇢) = 3 (G,~) , (3)

where 3 (G,~) is the DISTS index measuring the dissimilarity be-
tween images G and ~.

Color similarity using HSV color histogram. While the DISTS
metric achieves good results in measuring similarity in the overall
structure of the image content, it has not been as e�ective in en-
suring color similarity. Thus we added a color histogram distance
metric, which measures similarity in HSV color space. More specif-
ically, the images are converted to HSV color space, and then for
each image, all pixels are classi�ed into one of 24 ⇥ 8 ⇥ 8 partitions
based on hue (24 classes), saturation (8), and value (8). Note that we
allocate more partition resolution to the hue. The distance between
two sets of bins is then measured using the Hellinger distance,
which is an e�ective technique to measure the amount of overlap
between two distributions:

⇢⇠ = � (G,~) =

vuut
1 � 1qÕ=

8=1 G8
Õ=
8=1 ~8

=’
8=1

p
G8~8 , (4)

where = is the number of partitions, and G8 ,~8 represent the number
of pixels that fall into partition 8 from images G and ~, respectively.
In Fig. 6, we compare our �nal methodwith andwithout considering
the HSV color similarity metric. Note that the addition of the color
similarity results in renderings that are much more consistent with
the colors of the input image.

Evaluation details. The input to our evaluation is a set of two
images: the original input image and an image rendered with a
candidate parameter set. First, we crop the bounding box for all
water regions for both the original image and re�ection texture and
resize them to 256x256. Then, using the resized re�ection texture
and the candidate parameter set, an image of the same resolution
is rendered. The rendered image and the resized original image are
passed to the two metrics for evaluation.

4.2 Algorithm
A simple cuckoo search maintains a set of = nests (25 in our im-
plementation), each with a candidate solution, or egg (i.e., values
for each of the parameters). In each iteration, a new solution, or
cuckoo egg, is generated for each nest via a Lévy �ight, a random
walk in the parameter space in which the step size follows the Lévy
distribution. The cuckoo egg replaces an egg in another nest if it
improves upon the latter. Next, for each nest, a new cuckoo egg is
generated by mutation and replaces the egg in the nest if it is of
improved quality. At the end of each iteration, the algorithm keeps
the best nests and drops a small fraction : of the nests (5 in our
implementation) replacing them with new random eggs. The sup-
plemental material describes a parallelized version of the algorithm
for improved e�ciency and provides the pseudocode for both.

Termination condition. The algorithm terminates when the op-
timization no longer yields signi�cant improvements to the best
egg. Let the energy of the best egg at the end of iteration : be ⇢ (:).
To reduce the in�uence of random oscillations, we �rst apply a

Image plane

Water plane

Ray
marching

Reflection ray

Miss

Hit

(a) ray marching

Image plane

Reflection
texture
coordinate

Water plane

(b) texture sampling

Figure 7: The image-based re�ection method. The objects
are mapped onto the water plane to determine the re�ection
source point in 3D. We perform ray-marching in image space
with additional checks in 3D space to consider the height
of wall proxy objects. Then, we fetch the re�ection color
embedded in the water surface from the re�ection texture.

smoothing �lter to ⇢ (·), yielding the smoothed energy ⇢0 (·):

⇢0 (:) =
:’

8=:�B+1
{8 � (: � B)}⇢ (8) , (5)

where B is the �lter size. When {⇢0 (:) � ⇢0 (: � 1)}/⇢0 (:) < n , the
algorithm terminates. We use B = 100 for smoothing and n = 0.0001
as a conservative enough threshold.

5 RENDERER
Our algorithm renders realistic deep water bodies with local re-
�ections, taking as input the the segmentation mask and re�ection
texture as well as the wave, wind, camera, and lighting parameters
mentioned earlier and listed in the supplemental material.

Realistic simulation of water has been researched extensively
in the graphics community. The methods can be classi�ed into
two main categories: physically-based models and empirical meth-
ods [Darles et al. 2011]. Physically-based methods are suitable for
shallow water simulation and are capable of simulating full three
dimensional behavior of water [Bridson and Müller-Fischer 2007].
Empirical methods generate 2D displacement maps of water surface
of deep water scenes. Empirical methods can be further categorized
into spatial-domain methods, spectral-domain methods, and hybrid
methods [Darles et al. 2011]. In our work, we employ the spec-
tral domain approach presented in Tessendorf [2001] to generate
a displacement map of water surface using the wave and wind
parameters. This is a commonly used approach in �lm production
and real-time applications.

Our approach considers the fact that the surface of the water
may extend in�nitely and also allows the user to interactively zoom.
Thus the naïve approach of constructing a large and dense mesh
is not practical. We instead adopt the projected grid LOD method
from Johanson and Lejdfors [2004]. More speci�cally, in the vertex
shader, we generate a screen space mesh. We project each vertex
to the water surface plane and apply the displacement based on
the computed displacement map before projecting back to screen
space. This results in a nearly uniformly and dense distribution of
mesh vertices in screen space.

Image-based re�ection. Water surface re�ection is an essential
component in making the water surface appear realistic. Tessendorf
[2001] provides a good summary on surface wave optics. While

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander

common implementations to achieve this goal use environment
mapping, it is challenging to estimate an environment map from
one static image and apply it to the entire scene. Furthermore,
environment maps have a limitation of not being able to simulate
local re�ections. We take a similar approach to the screen space
re�ection method of McGuire and Mara [2014]. This is a practical
method used for real-time applications which computes re�ection
given the normal and depth information from the scene. In our
application, we do not have this information directly, but we can
approximate it given the camera pose and water mask. Also, rather
than retrieving the re�ection color from the surface of objects,
we make use of the re�ection component embedded within the
water regions stored in the precomputed re�ection texture to allow
re�ection estimations even when objects are absent in the input
image.

We �rst place vertical curved walls along water boundaries in
world coordinates as proxies for 3D objects. The exact positions
of the walls are automatically determined by projecting the water
mask on the image plane onto the ground-level plane using the
estimated camera parameters (see Fig. 7 for a diagram with a simple
example). For each pixel, we compute the collision between the
re�ection ray from water facet and a vertical wall in world space.
We compute the texel coordinate of the re�ection texture which
contains the corresponding re�ection color. If the re�ection ray
completely misses the vertical walls, we retrieve a color from the
closest point in the re�ection texture. This approximation does not
a�ect the quality of the �nal image signi�cantly. This follows from
the fact that there is very little contribution from the re�ection
when the incident angle is small. Since that is usually the case
when the re�ection vector does not hit any of the curved planes,
the color of the water facet is dominated by the refraction term.

More speci�cally, these are the steps to compute the re�ection
color as implemented in our fragment shader. Further optimizations
to improve running time are discussed in the supplemental material.

(1) Calculate the re�ection vector. Given the view and normal vec-
tors, we compute the re�ection vector inworld space and project
it onto screen space.

(2) Compute wall collision points.We then apply ray marching in
screen space to �nd the collision points with water boundaries.
Note that there can be multiple collisions per ray as shown in
Fig. 7a.We project the collision points back to world coordinates
such that the points now reside on the water boundaries in
world coordinates (forward purple arrows). We then calculate
the collision points of the re�ection vector and the object using
the direction of the original re�ection vector.

(3) Determine �rst valid collision point. If a collision point lies on
the vertical wall, the collision point is a valid re�ection color
source point. To determine whether the wall is high enough
to result in a collision, we use an approximation that projects
the collision point back to screen space and checks the mask
value of that point to ensure it is not on the water surface. Then,
we choose the valid collision point that is closest to the ray
marching starting point.

(4) Calculate the re�ection texture coordinates. We then calculate
the point on the water surface plane that contains the re�ection

color under a �at mirror assumption (Fig. 7b). Finally, we sample
the re�ection texture at that position to retrieve the color.

6 EXPERIMENTS
We test our system on a dataset consisting of 67 images (32 from
Places [Zhou et al. 2014] and 35 in-the-wild images) with a variety of
water scenes including oceans, rivers, ponds, and lakes. The image
resolutions ranged from 748⇥421 to 4032⇥3024. All experiments
are performed on a PC with an 8 core Ryzen 2700X CPU, 16GB
of RAM, and an NVIDIA GeForce RTX 2070 GPU. Please refer to
the accompanying video for animated renderings and additional
results.

Runtime. The runtime e�ciency of our approach is proportional
to the number of pixels in the water regions of the input image. For
a 4 image (4032⇥3024) with the water occupying approximately
one-third of the image, performing the water segmentation takes
approximately 7 seconds, predicting the re�ection texture takes 9
seconds, and estimating the parameters using the cuckoo search
metaheuristic takes 4.5 minutes to evaluate about 19000 di�erent
candidate solutions. About 60% of execution time for optimization
is spent on rendering, 30% on the DISTS metric evaluation, and
10% on color metric evaluation. The execution time for the opti-
mization is indeed independent of input image size, as we evaluate
the energy using a �xed-size image patch as described in Sec. 4.1.
A theoretical convergence analysis of the cuckoo search is out of
scope for this paper and is still an open problem except for a sim-
pli�ed version of the algorithm [He et al. 2018]. We implement a
real-time renderer using WebGL for users to view and interact with
the resulting animation. Our optimized renderer reaches 50-60fps
at 4 resolution.

Results. We demonstrate the �nal results on a variety of input
images generated by our method in Figs. 1 and 8. We also visualize
some close-up details, the predicted segmentation mask, and the
re�ection texture. Note the high accuracy of the mask, particularly
for large water bodies of varying shapes. Our re�ection texture
network is able to generate a high-quality re�ection texture for
images with both calm and turbulent waters. Naturally, for calm
waters, the reconstructed re�ection is much sharper than for turbu-
lent waters as shown in the third case of Fig. 8. Recall that in most
cases, to render the turbulent water, a smooth re�ection texture is
su�cient since re�ection details are not discernible in a turbulent
setting.

User study. In addition to the visual demonstration, we conduct
a user study to evaluate the realism of our composited results. We
randomly select 30 images from the testing dataset and create a
poll of 30 “real or rendered” questions for each user. For every
question, the user is randomly shown either the real input or the
rendered result and then asked whether the image looks realistic
or not. We retrieve 2,160 answers from 72 users and compute the
“real rate”, which is the percentage of images that the users tag as
real. The real rate for real images is 81.67% while the real rate for
rendered images is 65.46%, indicating that most of our generated
results are thought to be as realistic as real images. As shown
in this user study, although our method can hardly ensure pixel-
level accuracy with respect to the ground truth image, it is able to

Water Simulation and Rendering from a Still Photograph SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure 8: Rendered results and closeups for di�erent in-
put scenes, along with the predicted segmentation masks
and re�ection textures. The input images are shown in the
�rst column. Input images: Edward Nicholl/Flickr (�rst),
Foliez/Pixabay (second), and Unknown/PxHere (third).

generate photorealistic results with high �delity at a low rendering
cost for real-time applications.

Applications. Our method generates 3D representations of the
water surface. It not only allows direct editing of parameters to
control wave, wind, and lighting but also enables interesting appli-
cations such as insertion of synthetic objects and re�ection-aware
color transfer as shown in Fig. 9. To render the synthetic objects
into the water (Fig. 9a), we �rst use the estimated camera pose and
wave parameters to compute re�ection and refraction vectors in
world coordinates. Then, we compute intersections between the
rays and the synthetic objects. The objects are shaded based on
their normals and our estimated SH coe�cients. In the re�ection-
aware color transfer (Fig. 9b), we can simulate consistent water
animation as the color of the surrounding environment changes
producing interesting time-lapse videos as shown in the supple-
mental video. Given an input image, we �rst apply a color transfer
method [He et al. 2019] to simulate its appearance at di�erent times
of the day or seasons. Taking the original image and one or more
of its recolored results as input, we separately estimate the param-
eters and textures for each input image. We then use the median

Input Rendered Edited
(a) Synthetic object insertion

Input Edited 1 Edited 2 Edited 3
(b) Re�ection-aware color transfer

Figure 9: Applications. In (a), our method allows to place syn-
thetic objects on the water surface and generates realistic re-
�ections. In (b), given an input image, we transfer its color to
simulate di�erent environments and predict corresponding
re�ection textures. By interpolating between the predicted
parameters, the edited results vary smoothly. Input Images:
(a) Krzysztof Golik/Wikimedia (b) Confaulk/Wikimedia (top)
and Rixie/Adobe Stock (bottom).

Input Output Input Output
(a) (b)

Figure 10: Limitations. In (a), our method fails to capture
the dynamics of breaking waves. In (b), our method does not
handle strong re�ection of sunlight. The second input image:
Eshan Chandra/Pixabay.

values among all the estimates for the wave dynamics and camera
pose parameters, which circumvents artifacts due to any minor
di�erences in the estimated parameters among all input images.
Finally, we linearly interpolate the re�ection textures and lighting
parameters to generate a water animation with smoothly varying
lighting conditions.

7 LIMITATIONS AND SUMMARY
While our method works on a wide variety of scenes, there are
situations where our approach is not applicable due to the inher-
ent limitations of the water surface simulation model employed.
For instance, our method cannot simulate �owing water such as
waterfalls and dynamic water breaks such as ocean waves on the
coastal line (Fig. 10a). We also do not propose a detailed treatment
of refraction but instead use a single color in place of the refraction
component, which is a valid assumption case of deep water. In
addition, our lighting model does not handle strong re�ection of
sunlight in some cases (Fig. 10b) because both input and output of
the re�ection texture prediction are standard 24-bit RGB images,
which cannot store high radiance by strong lights. Furthermore, we

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Ryusuke Sugimoto, Mingming He, Jing Liao, and Pedro V. Sander

assume that there is one set of parameters for the body of water,
and this assumption may not hold very close to the coastline. Our
current implementation does not support multiple bodies of water
in the same scene, but this can be easily addressed with a trivial
extension.

In summary, we present a technique that renders realistic an-
imated water surfaces given a single still input photograph. Our
approach determines rendering parameters and water re�ection
textures using a combination of neural networks and optimization
techniques. The results are then fed to our renderer which displays
the animated water in real-time. The entire process is fully auto-
matic and relies on a single input image. Our approach generates
realistic results for a wide variety of natural scenes with di�erent
lighting and water surface conditions, yielding particularly good
results for deepwater scenes. The generated 3D scenes show the
potential to support a variety of interactive applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for valuable feedback on our
manuscript and the owners of photographs used in our paper. The
authors from Hong Kong were partly supported by RGC including
GRF Grant CityU 11216122.

REFERENCES
Robert Bridson and Matthias Müller-Fischer. 2007. Fluid Simulation: SIGGRAPH

2007 Course NotesVideo Files Associated with This Course Are Available from the
Citation Page. In ACM SIGGRAPH 2007 Courses (San Diego, California) (SIGGRAPH
’07). 1–81.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.
Yuille. 2018a. DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal.
Mach. Intell. 40, 4 (2018), 834–848.

Liang-Chieh Chen, George Papandreou, Florian Schro�, and Hartwig Adam. 2017.
Rethinking Atrous Convolution for Semantic Image Segmentation. CoRR
abs/1706.05587 (2017).

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schro�, and Hartwig
Adam. 2018b. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part VII (Lecture Notes in
Computer Science, Vol. 11211), Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss (Eds.). Springer, 833–851.

Yung-Yu Chuang, Dan B. Goldman, Ke Colin Zheng, Brian Curless, David Salesin, and
Richard Szeliski. 2005. Animating pictures with stochastic motion textures. ACM
Trans. Graph. 24, 3 (2005), 853–860.

E. Darles, B. Crespin, D. Ghazanfarpour, and J.C. Gonzato. 2011. A Survey of Ocean
Simulation and Rendering Techniques in Computer Graphics. Computer Graphics
Forum 30, 1 (2011), 43–60.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli. 2020. Image Quality
Assessment: Unifying Structure and Texture Similarity. CoRR abs/2004.07728 (2020).

Yuki Endo, Yoshihiro Kanamori, and Shigeru Kuriyama. 2019. Animating landscape:
self-supervised learning of decoupled motion and appearance for single-image
video synthesis. ACM Trans. Graph. 38, 6 (2019), 175:1–175:19.

Yan Gui, Lizhuang Ma, Chao Yin, and Zhihua Chen. 2012. Preserving global features
of �uid animation from a single image using video examples. J. Zhejiang Univ. Sci.
C 13, 7 (2012), 510–519.

Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2019. Toward Con-
volutional Blind Denoising of Real Photographs. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 1712–1722.

Kaiming He and Jian Sun. 2015. Fast Guided Filter. CoRR abs/1505.00996 (2015).
KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning

for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society,
770–778.

Mingming He, Jing Liao, Dongdong Chen, Lu Yuan, and Pedro V. Sander. 2019. Progres-
sive Color Transfer With Dense Semantic Correspondences. ACM Trans. Graph. 38,
2 (2019), 13:1–13:18.

Xing-Shi He, Fan Wang, Yan Wang, and Xin-She Yang. 2018. Global Convergence
Analysis of Cuckoo Search Using Markov Theory. Springer International Publishing,
Cham, 53–67. https://doi.org/10.1007/978-3-319-67669-2_3

Aleksander Holynski, Brian L. Curless, Steven M. Seitz, and Richard Szeliski. 2021.
Animating Pictures With Eulerian Motion Fields. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer
Vision Foundation / IEEE, 5810–5819.

Claes Johanson and Calle Lejdfors. 2004. Real-time water rendering. Lund University
(2004).

Thi-Ngoc-Hanh Le, Chih-Kuo Yeh, Ying-Chi Lin, and Tong-Yee Lee. 2022. Animating
still natural images using warping. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) (2022).

Chao Li, Yixiao Yang, Kun He, Stephen Lin, and John E. Hopcroft. 2020. Single Image
Re�ection Removal Through Cascaded Re�nement. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020. IEEE, 3562–3571.

Xiaoyu Li, Bo Zhang, Jing Liao, and Pedro V. Sander. 2019a. Document recti�cation
and illumination correction using a patch-based CNN. ACM Trans. Graph. 38, 6
(2019), 168:1–168:11.

Xiaoyu Li, Bo Zhang, Pedro V. Sander, and Jing Liao. 2019b. Blind Geometric Distortion
Correction on Images Through Deep Learning. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 4855–4864.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 8693), David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne
Tuytelaars (Eds.). Springer, 740–755.

Zhouchen Lin, Lifeng Wang, Yunbo Wang, Sing Bing Kang, and Tian Fang. 2007. High
Resolution Animated Scenes from Stills. IEEE Trans. Vis. Comput. Graph. 13, 3
(2007), 562–568.

Chenxi Liu, Liang-Chieh Chen, Florian Schro�, Hartwig Adam,Wei Hua, Alan L. Yuille,
and Fei-Fei Li. 2019. Auto-DeepLab: Hierarchical Neural Architecture Search for
Semantic Image Segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision
Foundation / IEEE, 82–92.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional net-
works for semantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society,
3431–3440.

Nelson L. Max. 1981. Vectorized procedural models for natural terrain: Waves and
islands in the sunset. In Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1981, Dallas, Texas, USA, August
3-7, 1981, Doug Green, Tony Lucido, and Henry Fuchs (Eds.). ACM, 317–324.

Morgan McGuire and Michael Mara. 2014. E�cient GPU Screen-Space Ray Tracing.
Journal of Computer Graphics Techniques (JCGT) 3, 4 (9 December 2014), 73–85.

Makoto Okabe, Ken-ichi Anjyo, Takeo Igarashi, andHans-Peter Seidel. 2009. Animating
Pictures of Fluid using Video Examples. Comput. Graph. Forum 28, 2 (2009), 677–
686.

Makoto Okabe, Ken Anjyo, and Rikio Onai. 2011. Creating Fluid Animation from a
Single Image using Video Database. Comput. Graph. Forum 30, 7 (2011), 1973–1982.

Makoto Okabe, Yoshinori Dobashi, and Ken Anjyo. 2018. Animating pictures of water
scenes using video retrieval. Vis. Comput. 34, 3 (2018), 347–358.

Ekta Prashnani, Maneli Noorkami, Daniel Vaquero, and Pradeep Sen. 2017. A Phase-
Based Approach for Animating Images Using Video Examples. Comput. Graph.
Forum 36, 6 (2017), 303–311.

Ravi Ramamoorthi and Pat Hanrahan. 2001. An e�cient representation for irradiance
environment maps. In SIGGRAPH 2001. 497–500.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Mu-
nich, Germany, October 5 - 9, 2015, Proceedings, Part III (Lecture Notes in Computer
Science, Vol. 9351), Nassir Navab, Joachim Hornegger, William M. Wells III, and
Alejandro F. Frangi (Eds.). Springer, 234–241.

Meng Sun, Allan D. Jepson, and Eugene Fiume. 2003. Video Input Driven Animation
(VIDA). In 9th IEEE International Conference on Computer Vision (ICCV 2003), 14-17
October 2003, Nice, France. IEEE Computer Society, 96–103.

Alexandru Telea. 2004. An Image Inpainting Technique Based on the Fast Marching
Method. Journal of Graphics Tools 9 (01 2004). https://doi.org/10.1080/10867651.
2004.10487596

Matthew Tesfaldet, Marcus A. Brubaker, and Konstantinos G. Derpanis. 2018. Two-
Stream Convolutional Networks for Dynamic Texture Synthesis. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018. IEEE Computer Society, 6703–6712.

Jerry Tessendorf. 2001. Simulating Ocean Water. SIGGRAPH’99 Course Note (01 2001).

https://doi.org/10.1007/978-3-319-67669-2_3
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1080/10867651.2004.10487596

Water Simulation and Rendering from a Still Photograph SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Kaixuan Wei, Ying Fu, Jiaolong Yang, and Hua Huang. 2020. A Physics-Based Noise
Formation Model for Extreme Low-Light Raw Denoising. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020. IEEE, 2755–2764.

Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, Guoqiang Han, and Shengfeng He. 2019.
Single Image Re�ection Removal Beyond Linearity. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 3771–3779.

Xin-She Yang and Suash Deb. 2009. Cuckoo Search via Lévy Flights. InWorld Congress
on Nature & Biologically Inspired Computing, NaBIC 2009, 9-11 December 2009,
Coimbatore, India. IEEE, 210–214.

Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. 2018. ICNet
for Real-Time Semantic Segmentation on High-Resolution Images. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,

2018, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 11207), Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer,
418–434.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2017.
Pyramid Scene Parsing Network. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 6230–6239.

Bolei Zhou, Àgata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. 2014.
Learning Deep Features for Scene Recognition using Places Database. In Advances
in Neural Information Processing Systems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger (Eds.). 487–495.

	Abstract
	1 Introduction and Related Work
	2 Water Segmentation
	3 Reflection texture generation
	4 Parameter Estimation by Cuckoo Search
	4.1 Energy Function
	4.2 Algorithm

	5 Renderer
	6 Experiments
	7 Limitations and Summary
	Acknowledgments
	References

